Advances in Polymer Technology
Publishing Collaboration
More info
Wiley Hindawi logo
 Journal metrics
See full report
Acceptance rate26%
Submission to final decision94 days
Acceptance to publication26 days
CiteScore4.800
Journal Citation Indicator0.400
Impact Factor3.1

Durable Flame-Retardant Cotton Fabric Modified by a Novel Reactive P-N Intumescent Flame Retardant

Read the full article

 Journal profile

Advances in Polymer Technology publishes articles reporting important developments in polymeric materials, their manufacture and processing, polymer product design and considering the economic and environmental impacts of polymer technology.

 Editor spotlight

Chief Editor Dr. Ning Zhu is a Professor at Nanjing Tech University, China. His current research focuses on the design, synthesis, and application of bio-based materials and functional polymers based on microflow technology and catalysis.

 Special Issues

Do you think there is an emerging area of research that really needs to be highlighted? Or an existing research area that has been overlooked or would benefit from deeper investigation? Raise the profile of a research area by leading a Special Issue.

Latest Articles

More articles
Research Article

Fabrication and Mechanical Properties of Chitosan/FHA Scaffolds

Fluor-hydroxyapatite (FHA) is a biomaterial with dental and orthopedic potential that is highly regarded as a result of bioactivity and high biocompatibility. Chitosan is used as a growth promoting agent in the tissues of the tooth and bone. Composite scaffold from these biomaterials is used as a pattern of natural bone and tooth grafts in tissue engineering. In this study FHA was synthesized through coprecipitation method. Then chitosan/FHA composites with different amounts of FHA (15 and 30 wt%) were prepared via freeze drying way. Structural and physical characteristics of the scaffolds were determined by powder X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) spectra, and morphological properties of the scaffolds were investigated using SEM evaluation. The compressive strength, water-uptake capacity, and biodegradation behavior of scaffolds were performed, as well. The results indicated that chitosan/30%FHA scaffold showed more compressive strength, lower biodegradation in phosphate buffer solution after 4 weeks. Therefore, it might be a suitable scaffold for tooth engineering.

Research Article

Biodegradable Composite of Gelatin Blend Microcrystalline Cellulose for Cd2+, Pb2+, and Cr3+ Adsorption from an Aqueous Solution

Biodegradable and eco-friendly composite adsorbent was synthesized from modified jute fiber and gelatin and evaluated its efficacy in removing cadmium (Cd2+), lead (Pb2+), and chromium (Cr3+) ions from an aqueous solution. The prepared sample was characterized using Fourier transform infrared spectroscopy, scanning electron microscopy, and energy dispersive X-ray analyses, which revealed that gelatin successfully intercalated into the microcrystalline cellulose matrix. In batch adsorption studies, the effects of pH, adsorbent dosage, initial metal ions concentration, and temperature on the removal of heavy metal ions were investigated. The adsorption capacity of the composite varied with changing parameters, and the maximum removal efficiency obtained for Cd2+, Pb2+, and Cr3+ was 95%, 88%, and 70%, respectively, at pH 6 with 60 ppm of each metal ions concentration and an adsorbent dosage of 1.0 g L−1. Different functional groups in composite adsorbent facilitated heavy metal ions adsorption. Five error analysis methods were used to evaluate the fit the goodness of the data. The equilibrium adsorption and kinetic data were well-fitted with the Langmuir isotherm model and pseudo-second-order, respectively. Moreover, the thermodynamic study showed that the adsorption was spontaneous, chemisorption, and endothermic. Our work offers a sustainable and biodegradable composite synthesized from modified jute fiber and gelatin for multimetal ions removal from an aqueous, which is an eco-friendly alternative to conventional nonbiodegradable adsorbents with potential environmental risks.

Research Article

Synthesis, Evaluation, and Electrochemical Detection Application of Magnetic Molecularly Imprinted Polymers for 4,4-Methylenedianiline from Food-Contact Materials

Magnetic molecularly imprinted polymers (MIPs) capable of selectively recognizing and absorbing 4,4-methylenedianiline (MDA) were successfully synthesized, using Fe3O4 coated with mesoporous silicon (Fe3O4@mSiO2) as the magnetic carrier, 4-vinyl pyridine (4-VP) as the functional monomer, ethylene glycol dimethacrylate (EGDMA) as the cross-linking agent, and MDA as the template molecule. The morphology, structure, and properties of MIPs were characterized, suggesting that the MIPs had obvious core-shell structure and strong magnetic responsiveness. The results of adsorption property tests showed that the MIPs could specifically recognize and adsorb MDA with excellent selectivity and reusability. The adsorption kinetic process could be described by the pseudo-second-order kinetic model, and the adsorption isotherm could be fitted by the Langmuir model, with a maximum adsorption capacity of 59.5 μmol/g. Furthermore, the magnetic MIPs have been applied to the electrochemical detection of MDA from the composite film sample, with recoveries in the range from 87.8% to 92.5% and the RSD values less than 4.4%. The prepared magnetic MIPs showed potential for the selective separation and detection of MDA in food-contact materials.

Research Article

Influence of Drilling Parameters on the Delamination and Surface Roughness of Insulative-Coated Glass/Carbon-Hybrid Composite

Drilling in synthetic fiber-reinforced polymer composites is facing challenges due to their anisotropic, inhomogeneity, and abrasive machining behavior. The joining of composite parts using fasteners is commonly done by the drilling, and the generated heat is one of the main causes to damage the drilled hole in the composite. Moreover, the quality of drilled hole is crucial for joining parts effectively. The paper presents the design, fabrication, and drilling of a hybrid fiber-reinforced polymer (HFRP) based on insulative coating. These composites were fabricated using vacuum infusion molding (VIM) and coated with different thicknesses to investigate the influence of drilling parameters and associated damages. Cutting speed, feed rate, and coating thicknesses were varied, and a full factorial design of the experiment was formulated. High-speed steel (HSS) twist drill bit was used to drill the coated composite and test samples, and delamination factor and surface roughness were measured. ANOVA and full factorial response optimizer were used to evaluate the influence and optimum drilling parameters. The delamination factor (DF) at the entry and surface roughness were found to decrease with the increasing cutting speed. However, the DF at the exit showed the opposite. Coating thickness influenced the delamination at the entry whereas delamination at the exit has been found insignificant. For drilling HFRP composite with 1 mm coating thickness, 3000 RPM spindle speed and 0.08 mm/rev feed rate were found optimum parameters in minimizing surface roughness and delamination damage. However, 6000 RPM and 0.02 mm/rev were found optimum parameters for drilling HFRP composite with 1.5 mm coating thickness.

Research Article

Analysis of the Multiwalled Carbon Nanotubes Reinforced Polymethyl Methacrylate Bone Cement’s Characteristics and In Vitro Bioactivity to Prolong Its Functionality in Orthopedic Application

Polymethyl methacrylate (PMMA) bone cement is being used to fill voids that are created due to vertebral compression fractures. It is also a grouting medium in orthopedic joint replacement surgeries as they possess fast primary fixation to the bone. Considering the cement properties and in vitro bioactivity of bone cement is essential for cemented hip and knee joint replacement surgeries. In this study, commercial Simplex P bone cement (SPBC) is modified with carboxyl- (-COOH-) functionalized multiwalled carbon nanotubes (MWCNTs) to overcome high polymerization temperature, volumetric shrinkage, surface wettability, and in vitro bioactivity. A geometric dilution method is used to incorporate MWCNTs with the PMMA powder, which is in unequal proportions. The PMMA/MWCNT nanocomposite with different concentrations of reinforcements, such as 0.1, 0.3, 0.5, and 0.7 weight percentages, is prepared for the investigation. It was observed that the MWCNTs had a beneficial impact on PMMA bone cement (PMMA-BC) by enhancing its setting time (2.94%↑) and surface wettability (23.58%↑). Also, diminished polymerization temperature (29%↓) and volumetric shrinkage (40.9%↓) are observed for an optimum concentration of 0.7 wt. %. The bioactivity of the cement surface is validated by the in vitro bioactivity observed in simulated body fluid (SBF) through the development of primary and secondary apatite. It is concluded that the synthesized PMMA/MWCNT nanocomposites are found to have enhanced cement properties compared to PMMA-BC.

Research Article

The Properties of Tannery Waste Addition as a Filler Based on Two Types of Polymer Matrices: Poly(Butylene Adipate-Co-Terephthalate) (PBAT) and Poly(Butylene Succinate) (PBS)

Wet blue leather is a waste produced by the leather industry. It is a difficult waste product to dispose of, and if not disposed of properly, it will affect the environment and cause toxicity. Therefore, recycling was considered as an alternative to waste disposal. In this study, polymer composites were prepared from two types of polymers, poly(butylene adipate-co-terephthalate) (PBAT) and poly(butylene succinate) (PBS), and wet blue leather (WBL). A twin screw extruder and injection molding were used to prepare the composites. The effect of polymer type and WBL content (5, 10, and 15 wt%) on mechanical properties, thermal properties, flammability, MFI, water absorption, and morphology was investigated. All the polymer composites showed an increase in tensile and flexural strength, Young’s modulus, and water absorption but decreased in elongation at break, impact strength, and flammability compared to neat polymers.

Advances in Polymer Technology
Publishing Collaboration
More info
Wiley Hindawi logo
 Journal metrics
See full report
Acceptance rate26%
Submission to final decision94 days
Acceptance to publication26 days
CiteScore4.800
Journal Citation Indicator0.400
Impact Factor3.1
 Submit

Article of the Year Award: Outstanding research contributions of 2021, as selected by our Chief Editors. Read the winning articles.