Interdecadal Variation of Spring Extreme High-Temperature Events in the Western Tianshan Mountains and Its Relationship with the Tropical SST
Read the full article
Journal profile
Advances in Meteorology publishes research in all areas of meteorology and climatology. Topics include forecasting techniques and applications, meteorological modelling, data analysis, atmospheric chemistry and physics, and climate change.
Editor spotlight
Dr Jamie Cleverly, the journal’s Chief Editor, is based at James Cook University in Cairns, Australia. Their research interests include carbon, water and energy fluxes of arid-land Acacia swales; physics of the atmospheric surface layer and interactions with terrestrial ecosystems.
Special Issues
Latest Articles
More articlesAnalysis of Climate Variability and Trends for Climate-Resilient Maize Farming System in Major Agroecology Zones of Ethiopia
Maize is one of the most important cereal food crops, and it can be grown all year in various agroecological zones. However, its vegetative growth and yield are susceptible to rainfall and temperature variability. As a result, the analysis of rainfall and temperature variability and trend was urgently needed in maize-growing agroecology zones to restructure the production system. The aim of the study was to examine rainfall and temperature variability and trends for developing a climate-resilient maize farming system in major agroecology zones in northwest Ethiopia. The study was implemented in low productive agroecology zones (LPZ), medium productive agroecology zones (MPZ), and high productive agroecology zones (HPZ) of northwest Ethiopia using daily time series climate data during the period 1987–2018. The coefficient of variation (CV), precipitation concentration index (PCI), rainfall anomaly index (RAI), and standardized precipitation (SPI) were applied to examine rainfall variability. Mann–Kendall’s and Sen’s slope estimator trend tests were used to detecting the statistical significance of changes in rainfall and temperature. Statistically significant increasing trends for annual maximum and minimum temperatures were recorded for all maize-producing agroecology zones. The mean annual temperature has exhibited a significant warming trend of 0.12 to 0.54°C per decade. The average annual rainfall has decreased by 38 to 67 mm per decade in all maize agroecology zones. Our research also showed that droughts now happen every one to three years; even consecutive droughts were seen in 2009, 2010, and 2011. For this reason, it could be required to develop a system of climate-resilient maize farming to address the issues of both global warming and the sub-Saharan countries that make up our study area. Climate-resilient maize agronomic activities have been determined by analyzing the onset, length of the growth period (LGP), and cessation date. Accordingly, the lower and upper quartiles of the date of onset of rainfall were in a range of May 9 to June 2, respectively; the length of the growth period (LGP) during the rainy season ranges from 97 to 232 days, and the cessation date of rainfall was November 1. Therefore, the short- to long-maturing maize varieties can be planted from May 9 to June 2 and can begin to be harvested in the first week of November under the current climatic circumstances.
The Interannual Relationship between the Diabatic Heating over the South Asia and the Snow Depth over the Southern Tibetan Plateau in Late Spring to Early Summer: Roles of the Air Temperature
The southern Tibetan Plateau (TP) is snow covered during cold season but exhibits faster snow melting in early summer. Using in situ observations and improved satellite-derived data, the present study indicates that the snow depth (SD) over the southern TP exhibits distinction characteristics between late spring (i.e., P1: April 16th–May 15th) and early summer (i.e., P2: May 16th–June 14th). In terms of climate states, the snow melting rate over the southern TP in P2 is faster than that in P1. The acceleration of snow melting during P2 is mainly found over high elevation areas caused by the increase of local air temperature. Diagnoses of the thermodynamic equation further demonstrate that the warming over the southern TP during the two periods is mainly attributed to the meridional temperature advection and diabatic heating in situ. On the interannual time scale, the SD over the southern TP is closely related to diabatic heating over South Asia. During P1, the diabatic cooling from the southern Bay of Bengal eastward to the western South China Sea suppresses convection over the Bay of Bengal and southern TP and has resulted in an upper-level anomalous cyclone and cold temperature anomalies from the surface to 200 hPa over the southern TP, favoring the above-normal SD over the southern TP. On the other hand, SD over the southern TP in P2 is closely related to diabatic cooling over the northern Indochina Peninsula and diabatic heating over the southern China. But we could not prove that these diabatic heating anomalies can affect the SD over the southern TP by modulating local surface air temperature. This may be limited by the quality of the data and the simulation capability of the simple model.
Evaluation of Satellite Precipitation Products for Estimation of Floods in Data-Scarce Environment
Utilization of satellite precipitation products (SPPs) for reliable flood modeling has become a necessity due to the scarcity of conventional gauging systems. Three high-resolution SPPs, i.e., Integrated Multi-satellite Retrieval for GPM (IMERG), Global Satellite Mapping of Precipitation (GSMaP), and Climate Hazards Group InfraRed Precipitation with Station (CHIRPS), data were assessed statistically and hydrologically in the sparsely gauged Chenab River basin of Pakistan. The consistency of rain gauge data was assessed by the double mass curve (DMC). The statistical metrics applied were probability of detection (POD), critical success index (CSI), false alarm ratio (FAR), correlation coefficient (CC), root mean square error (RMSE), and bias (B). The hydrologic evaluation was conducted with calibration and validation scenarios for the monsoon flooding season using the Integrated Flood Analysis System (IFAS) and flow duration curve (FDC). Sensitivity analysis was conducted using ±20% calibrating parameters. The rain gauge data have been found to be consistent with the higher coefficient of determination (R2). The mean skill scores of GSMaP were superior to those of CHIRPS and IMERG. More bias was observed during the monsoon than during western disturbances. The most sensitive parameter was the base flow coefficient (AGD), with a high mean absolute sensitivity index value. During model calibration, good values of performance indicators, i.e., R2, Nash−Sutcliffe efficiency (NSE), and percentage bias (PBIAS), were found for the used SPPs. For validation, GSMaP performed better with comparatively higher values of R2 and NSE and a lower value of PBIAS. The FDC exhibited SPPs’ excellent performance during 20% to 40% exceedance time.
Accuracy Evaluation of Standardized Precipitation Index (SPI) Estimation under Conventional Assumption in Yeşilırmak, Kızılırmak, and Konya Closed Basins, Turkey
The doubt in the calculation algorithm of the standardized precipitation index (SPI), which is widely preferred in the evaluation and monitoring of drought, still remains up-to-date because its calculation process is performed in the form of standardization or normalization with a default probability distribution. Therefore, the success of this index is directly affected by the choice of the probability distribution model. This study is based on the effect of three different parameter estimation methods on the calculation process, as well as the comparison of the SPI results calculated based on the default Gamma distribution and the distribution with the best ability to represent the 3-and 12-month consecutive summed rainfall data among the 15 candidate distributions namely Gamma (GAM), Generalized Extreme Value (GEV), Pearson Type III (P III), Log Pearson Type III (LP III), two-parameter Lognormal (LN2), three-parameter Lognormal (LN3), Generalized Logistic (GLOG), Extreme Value Type I (EVI), Generalized Pareto (GPAR), Weilbul (W), Normal (N), Exponential (EXP), Logistic (LOG), four-parameter Wakeby (WK4), and five-parameter Wakeby (WK5) distributions. Approximately 68.4% and 18.4% of the 3-month data considered had the best fit to the Weibull and Pearson III distribution, while approximately 24% and 18% of the 12-month data had the best fit to the Weibull and Logistic distribution. On the other hand, it was found that the default Gamma distribution calculated the extreme drought categories significantly more than the best-fit distribution model. In terms of parameter estimation methods, L-moments for 3-month series and maximum likelihood approaches for 12-month series were most dominant.
Orographic Effect and the Opposite Trend of Rainfall in Central Vietnam
Central Vietnam is characterized by severe flooding associated with heavy rainfall events caused by interactions between multiscale atmospheric circulations and the complex local terrain. Previous studies believed rainfall in central Vietnam is closely related to the cold surge; however, it fails to explain the cause of the early rainfall occurrence in August in the subregion. For the first time, this study investigates the detailed atmospheric mechanisms associated with rainfall variations in central Vietnam using the empirical orthogonal function (EOF) applied to the recently developed high-resolution Vietnam gridded precipitation (VnGP) dataset. Reanalysis data NCEP/NCAR is used to associate the rainfall changes with respective atmospheric mechanisms. EOF analysis detected two dominant rainfall modes. The primary mode explains the rainfall variation from October to November over the central and is directly related to the interaction of cold surges and tropical disturbances. The second mode accounts for rainfall occurring in north central from September to mid-October, which is attributed to the westerly summer monsoon activities. Also, we revealed that, while the first mode exhibits a significant correlation with El Niño-southern oscillation, the second depends highly on the contrast of sea surface temperature in the northern and southern Hemispheres. This different oceanic forcing and the local topological effect of Truong Son mountain range reasonably explain the opposite rainfall pattern in central Vietnam in early fall.
Spatiotemporal Variability of Extreme Rainfall in Southern Benin in the Context of Global Warming
Changes in the frequency and timing of extreme precipitation in southern Benin are assessed in the context of global warming. The peak-over-threshold (POT) is used for this purpose, with the six (06) year return period daily rainfall as the threshold over seventeen (17) weather stations between 1960 and 2018. The results show that the South Benin experienced extreme rainfall on many occasions between 1960 and 2018 with a nonuniform spatiotemporal distribution of this category of rainfall. No statistically significant trend in the frequency and variation of extreme rainfall intensities is revealed over the study period. Despite the low rate of extreme rainfall, the monthly trend is consistent with the bimodal rainfall regime in southern Benin. The global warming highlighted in its last decades in southern Benin is accompanied by a slightly upward trend in extreme rainfall compared to the period before 1990.