Effects of Harvesting Age and Barley Varieties on Morphological Characteristics, Biomass Yield, Chemical Composition, and Economic Benefits under Hydroponic Conditions in Fogera District, Ethiopia
Read the full article
Journal profile
Advances in Agriculture publishes research on the cultivation of soil and crops, and the rearing of livestock. Its focus is on new methods and technologies for improving agricultural processes, increasing yield, conservation and breeding.
Editor spotlight
Advances in Agriculture maintains an Editorial Board of practicing researchers from around the world, to ensure manuscripts are handled by editors who are experts in the field of study.
Abstracting and Indexing
Latest Articles
More articlesAn Overview of the Impact of Tillage and Cropping Systems on Soil Health in Agricultural Practices
There is currently a demand to grow more crops in less area as a result of urbanization’s reduction of agricultural land. As a result, soil fertility is gradually declining. To maintain soil fertility, various management methods are used in modern times. The conventional tillage method is a traditional tillage method that damages soil structure, but zero tillage can improve soil quality. By maintaining soil structure with no-tillage, biological processes are frequently improved and microbial biodiversity is increased. This review helps to understand the role of tillage as well as cropping systems in increasing crop production by maintaining soil fertility. For agricultural production and environmental protection to be sustained for future generations, soil quality must be maintained and improved in continuous cropping systems. The nodulation, nitrogen fixation, and microbial community are all impacted by different cropping systems and tillage methods. They also alter soil properties including structure, aeration, and water utilization. The impact of tillage and cropping system practices such as zero and conventional tillage systems, crop rotation, intercropping, cover cropping, cultivator combinations, and prairie strip techniques on soil fertility is carefully summarized in this review. The result highlights that conservational tillage is much better than conventional tillage for soil quality and different aspects of different tillage and their interaction. On the other hand, intercropping, crop rotation, cover cropping, etc., increase the crop yield more than monocropping. Different types of cropping systems are highlighted along with their advantages and disadvantages. Using zero tillage can increase crop production as well as maintain soil fertility which is highlighted in this review. In terms of cropping systems and tillage management, our main goal is to improve crop yield while minimizing harm to the soil’s health.
Role of Phosphorus and Inoculation with Bradyrhizobium in Enhancing Soybean Production
Soybean (Glycine max L. Merril) is among the key oil seed crops worldwide, providing several benefits from human consumption to the enhancement of soil productivity. In Uganda, legumes are cultivated on roughly 1.5 million ha, with soybean being produced on a lower production area of 150,000 ha compared to beans (925,000 ha) and groundnuts (253,000 ha). In terms of achievable yield, soybean emerges the highest at 1.2 t·ha−1 as compared to beans (0.5 t·ha−1) and groundnuts (0.7 t·ha−1). Despite the smallest production coverage area, the crop’s feasible grain yield is projected at 4.6 t·ha−1 under optimal environmental conditions. The major bottleneck to the crop’s production is the decreasing soil fertility, mainly caused by low nitrogen (N) but also phosphorus (P) levels in the soil. There is a high potential for supplying N from the atmosphere through biological N fixation (BNF), a natural process mediated by the symbiotic bacteria Bradyrhizobium japonicum, which requires optimum P levels for effective N fixation and increased yield. The current work reviews the present status of soybean production in Uganda, highlights its ecological requirements, importance, and constraints, and proposes the use of inoculation and P application to boost its production.
Adaptability of Genetically Engineered Bt Cotton Varieties in Different Growing Regions of Ethiopia
Cotton varieties that are high yielding and resistant to pests are required to improve production and productivity and to capitalize on the crop’s enormous potential and its critical role in Ethiopia’s expanding textile industry. Lack of improved cotton technology has forced farmers to recycle local varieties for ages which have become very susceptible to pests which are the major causes of very low productivity and quality of cotton in the country. Among major pests, bollworms (Helicoverpa armigera and Pectinophora gossypiella) account for 36–60% of yield losses. In the absence of genetically resistant or tolerant varieties, genetically engineered bollworm-resistant Bacillus thuringiensis (Bt) cotton has offered a great opportunity to reduce crop losses from bollworms. The objective of the study was to evaluate the efficacy of bollworm resistance and adaptability of Bt cotton varieties across cotton growing environments in Ethiopia and provide recommendations. Two Bt cotton hybrids (JKCH 1947 and JKCH 1050), one Bt OPV (Sudan), and three OPV conventional varieties (Weyito 07, Stam-59A, and Deltapine-90) were evaluated at seven different agro-ecologies using a randomized complete block design (RCBD) with three replications. Results showed significant differences among genotypes for yield and other traits. Hybrids JKCH 1947 and JKCH 1050 were the top high yielders under high and mild bollworm infestations, with mean seed cotton yield of 3.10 t·ha−1 each and lint yield of 1.20 and 1.19 t·ha−1, respectively, whereas the standard check Deltapine-90 (popular variety) recorded a mean seed cotton and lint yield of 2.3 t·ha−1 and 0.8 t·ha−1, respectively. Combined analysis showed that genotypes, environment, and the genotypes × environment interactions had a highly significant effect ( < 0.05) on fiber quality. Weyito 07 and the two hybrids (JKCH 1947 and JKCH 1050) had upper half mean fiber lengths in the range of 27.78 to 32.11 mm. For fiber strength, genotypes Weyito 07, JKCH 1050, Stam-59A, and JKCH 1947 had 33.50 g/tex, 28.59 g/tex, 28.00 g/tex, and 27.75 g/tex, respectively. The fiber quality values of the hybrids were within acceptable limits, with staple lengths ranging from 27.78 to 28.44 mm and fiber strengths ranging from 27.75 to 28.59 g/tex. Results show potential adaptation of the hybrids under different cotton growing environments and their superior yield performance due also to added protection of yield losses from damage by bollworms. The contrast is bigger under high insect pressure conditions due to the genetically engineered Bt trait compared to the conventional varieties. The effective field resistance against bollworms in most locations shows that wider use of these hybrids can enhance cotton productivity and quality in Ethiopia.
Impacts of Heavy Metal Pollution on Ethiopian Agriculture: A Review on the Safety and Quality of Vegetable Crops
Lack of nutritive and consumption of polluted food sources are the main health implications in African countries. Vegetable production is an optional balanced food source easily grown in the urban and rural areas. However, the levels of contaminant heavy metals in cultivated vegetables have not yet been identified. This review scrutinizes the contamination route, sources, health effects, environmental problems, food safety complications, and remedial activities of vegetable production in Ethiopian agriculture. Informal settlement, the rapid rate of urbanization, and the lack of community-based industrial expansion lead to massive increases in toxic heavy metals in ecosystems. They are supplied with food source diets unrestrictedly, mainly for vegetable consumption. Among the assessed metals, Zn (112.7 mg/kg), Cr (47.7 mg/kg), Pb (17.76 mg/kg), and Cd (0.25 mg/kg) existed in vegetables, with the highest concentrations in Ethiopia. They have negative effects on public safety, environmental security, and nutrient levels in horticultural crops. Hence, Ethiopia has no permissible standards for vegetable consumption and hazard analysis, critical control point, or food safety system. Additionally, physical, biological, and natural remedial strategies such as phytoremediation, phytoextraction, phytostabilization, rhizofiltration, bioremediation, and phytovolatilization are not applied to curtail deadly substance contents in Ethiopia. Despite this, some mitigation strategies, such as industrial waste treatment activities, are underway in Ethiopia’s universities and beer and sugar factories. This review found that the use of integrated remedial strategies could help to improve the efficiency of strategies in a sustainable manner, solid safety control for heavy metal management in Ethiopia, and management should begin with local solutions.
Influences of NPSB and Vermicompost Application Rates on Yields of Tomato (Lycopersicon esculentum Mill) at Jimma Ganati Research Site of Wallaga University, Western Ethiopia
The tomato (Lycopersicon esculentum Mill) is an important vegetable crop in Ethiopia and is produced and eaten in large quantities throughout the nation. However, the tomato production is quite low (10 tons·ha−1) compared to the global average yield of 34 tons·ha−1 due to the repetitive use of chemical fertilizers alone, growing intensive crops that are absorbing significant amounts of the soil nutrients, and the lack of application of organic fertilizers. Therefore, it is crucial to take accurate measurements when using fertilizers in order to solve issues and boost crop yield. The study’s objective was to find out how NPSB and vermicompost fertilizers together influenced tomato growth, yield characteristics, and yield at the Wallaga University Research Site for two consecutive years (2021 and 2022). The experiment used a factorial randomized block design with two components: four levels of NPSB and four levels of vermicompost. The tomato fruit production and all of its components were strongly impacted by the primary and interaction effects of NPSB and vermicompost treatment rates. The highest fruit length was 6.26 cm, the largest fruit diameter was 5.94 cm, the shoot fresh weight was 48.25 g·plant−1, the shoot dry weight was 4.50 g·plant−1, the marketable fresh fruit per plant was 5.54 kg, and the fruit yield was 24.36 ton·ha−1 after the application of 125 kg·ha−1 NPSB plus 8 ton·ha−1 vermicompost. Application of 125 kg·ha−1 of NPSB fertilizer along with 8 tons·ha−1 of vermicompost increases net benefits by 115922.5 ETB·ha−1 as compared to a control. Therefore, in order to enhance tomato yield, it may be suggested that farmers utilize the combination of 125 kg·ha−1 of NPSB and 8 tons·ha−1 of vermicompost rather than applying any inorganic fertilizers alone.
Agronomic Performance, Yield, and Nutritional Value of Grasses Affected by Agroecological Settings in Ethiopia
One of the major limiting factors of livestock production in Ethiopia is the very low quantity and quality of livestock feeds supplied in the country. This calls for seeking forages that complement poor quality feeds in the country. Hence, the target of this article was to compare three types of grass agronomic performance, yield, and chemical composition under three different agroecologies and three harvesting dates (60, 90, and 120 days). The field experiment was carried out in selected three districts in 2017/2018 in the main cropping season. The treatments were laid out in a factorial RCBD (the randomized complete block design) arrangement with three replications. The treatments contained the combinations of three altitudes and three harvesting dates. Agronomic, yield, and chemical composition data were collected from the current study and subjected to analysis of variance procedures with a significance test. In most agronomical and chemical compositions, the interactions of altitudes and harvesting dates were significant for all tested grasses (Mulato II, Napier, and Rhodes grasses). The highest plant height (PH) and dry matter yield (DMY) by Napier and the number of tillers per plant (NTPP) by Mulato II were recorded. There were significant values () for DMY and CP for all grasses at the interactions of harvesting dates and altitudes. The significant difference in DMY was observed as the harvesting date advanced, but CP was contrariwise. Of all tested species, the highest crude protein value and the least value of NDF and ADF (best forage quality parameters) were recorded by Mulato II. Thus, the results of this study revealed that Brachiaria hybrid cv. Mulato II has great potential to fulfil the demands for quality feeds for livestock production, especially at low altitudes. Nevertheless, in areas where, Napier and Rhodes grass are available, they can be alternative forage for Mulato II grass. Generally, for effective utilization of the tested grasses, the comparative feed value for animals must be conducted.