Computational Intelligence and Neuroscience no longer accepts submissions
Go to Table of Contents
Journal profile
Computational Intelligence and Neuroscience is a forum for the interdisciplinary field of neural computing, neural engineering and artificial intelligence. The journal’s focus is on intelligent systems for computational neuroscience.
Editor spotlight
Chief Editor, Professor Cichocki, engages in world-leading research in the field of artificial intelligence and biomedical applications of advanced data analytics technologies.
Special Issues
Latest Articles
More articlesDeep Hybrid Multimodal Biometric Recognition System Based on Features-Level Deep Fusion of Five Biometric Traits
The need for information security and the adoption of the relevant regulations is becoming an overwhelming demand worldwide. As an efficient solution, hybrid multimodal biometric systems utilize fusion to combine multiple biometric traits and sources with improving recognition accuracy, higher security assurance, and to cope with the limitations of the uni-biometric system. In this paper, three strategies for dealing with a feature-level deep fusion of five biometric traits (face, both irises, and two fingerprints) derived from three sources of evidence are proposed and compared. In the first two proposed methodologies, each feature vector is mapped from the feature space into the reproducing kernel Hilbert space (RKHS) separately by selecting the appropriate reproducing kernel. In this higher space, where the result is the conversion of nonlinear relations to linear ones, dimensionality reduction algorithms (KPCA, KLDA) and quaternion-based algorithms (KQPCA, KQPCA) are used for the fusion of the feature vectors. In the third methodology, the fusion of feature spaces based on deep learning is administered by combining feature vectors in in-depth and fully connected layers. The experimental results on 6 databases in the proposed hybrid multibiometric system clearly show the multimodal template obtained from the deep fusion of feature spaces; while being secure against spoof attacks and making the system robust, they can use the low dimensionality of the fused vector to increase the accuracy of a hybrid multimodal biometric system to 100%, showing a significant improvement compared with uni-biometric and other multimodal systems.
Hybrid Recommender System for Mental Illness Detection in Social Media Using Deep Learning Techniques
Recommender systems are chiefly renowned for their applicability in e-commerce sites and social media. For system optimization, this work introduces a method of behaviour pattern mining to analyze the person’s mental stability. With the utilization of the sequential pattern mining algorithm, efficient extraction of frequent patterns from the database is achieved. A candidate sub-sequence generation-and-test method is adopted in conventional sequential mining algorithms like the Generalized Sequential Pattern Algorithm (GSP). However, since this approach will yield a huge candidate set, it is not ideal when a large amount of data is involved from the social media analysis. Since the data is composed of numerous features, all of which may not have any relation with one another, the utilization of feature selection helps remove unrelated features from the data with minimal information loss. In this work, Frequent Pattern (FP) mining operations will employ the Systolic tree. The systolic tree-based reconfigurable architecture will offer various benefits such as high throughput as well as cost-effective performance. The database’s frequently occurring item sets can be found by using the FP mining algorithms. Numerous research areas related to machine learning and data mining are fascinated by feature selection since it will enable the classifiers to be swift, more accurate, and cost-effective. Over the last ten years or so, there have been significant technological advancements in heuristic techniques. These techniques are beneficial because they improve the search procedure’s efficiency, albeit at the potential sacrifice of completeness claims. A new recommender system for mental illness detection was based on features selected using River Formation Dynamics (RFD), Particle Swarm Optimization (PSO), and hybrid RFD-PSO algorithm is proposed in this paper. The experiments use the depressive patient datasets for evaluation, and the results demonstrate the improved performance of the proposed technique.
Advances in Computational Intelligence Techniques-Based Multi-Intersection Querying Theory for Efficient QoS in the Next Generation Internet of Things
An environment of physically linked, technologically networked things that can be found online is known as the “Internet of Things.” With the use of various devices connected to a network that allows data transfer between these devices, this includes the creation of intelligent communications and computational environments, such as intelligent homes, smart transportation systems, and intelligent FinTech. A variety of learning and optimization methods form the foundation of computational intelligence. Therefore, including new learning techniques such as opposition-based learning, optimization strategies, and reinforcement learning is the key growing trend for the next generation of IoT applications. In this study, a collaborative control system based on multiagent reinforcement learning with intelligent sensors for variable-guidance sections at various junctions is proposed. In the future generation of Internet of Things (IoT) applications, this study provides a multi-intersection variable steering lane-appropriate control approach that uses intelligent sensors to reduce traffic congestion at many junctions. Since the multi-intersection scene’s complicated traffic flow cannot be accommodated by the conventional variable steering lane management approach. The priority experience replay algorithm is also included to improve the efficiency of the transition sequence’s use in the experience replay pool and speed up the algorithm’s convergence for effective quality of service in the upcoming IoT applications. The experimental investigation demonstrates that the multi-intersection variable steering lane with intelligent sensors is an appropriate control mechanism, successfully reducing queue length and delay time. The effectiveness of waiting times and other indicators is superior to that of other control methods, which efficiently coordinate the strategy switching of variable steerable lanes and enhance the traffic capacity of the road network under multiple intersections for effective quality of service in the upcoming IoT applications.
Automated Cognitive Health Assessment Based on Daily Life Functional Activities
Dementia is increasing day-by-day in older adults. Many of them are spending their life joyfully due to smart home technologies. Smart homes contain several smart devices which can support living at home. Automated assessment of smart home residents is a significant aspect of smart home technology. Detecting dementia in older adults in the early stage is the basic need of this time. Existing technologies can detect dementia timely but lacks performance. In this paper, we proposed an automated cognitive health assessment approach using machines and deep learning based on daily life activities. To validate our approach, we use CASAS publicly available daily life activities dataset for experiments where residents perform their routine activities in a smart home. We use four machine learning algorithms: decision tree (DT), Naive Bayes (NB), support vector machine (SVM), and multilayer perceptron (MLP). Furthermore, we use deep neural network (DNN) for healthy and dementia classification. Experiments reveal the accuracy using the MLP classifier. This study suggests using machine learning classifiers for better dementia detection, specifically for the dataset which contains real-world data.
A Multiphase Semistatic Training Method for Swarm Confrontation Using Multiagent Deep Reinforcement Learning
In this paper, we propose a multiphase semistatic training method for swarm confrontation using multi-agent deep reinforcement learning. In particular, we build a swarm confrontation game, the 3V3 tank fight, based on the Unity platform and train the agents by a MDRL algorithm called MA-POCA, coming with the ML-Agent toolkit. By multiphase learning, we split the traditional single training phase into multiple consecutive training phases, where the performance level of the strong team for each phase increases in an incremental way. On the other hand, by semistatic learning, the strong team in all phases will stop learning when fighting against the weak team, which reduces the possibility that the weak team keeps being defeated and learns nothing at all. Comprehensive experiments prove that, in contrast to the traditional single-phase training method, the multiphase semistatic training method proposed in this paper can significantly increase the training efficiency, shedding lights on how the weak could learn from the strong with less time and computational cost.
Research on Intelligent English Education Based on the Short Video Recommendation Algorithm
In order to solve the problems of English education in the form of a short video, a research method of English intelligent education based on a short video recommendation algorithm was proposed. The recommendation system is a branch of artificial intelligence data mining, which improves the efficiency of short videos for English learning. The density ratio of users and video scoring matrix was 1000000/(1030 × 9394) = 10.3%. The dataset was a relatively sparse matrix. The original dataset was randomly divided into the training set and the test set, accounting for 80% and 20%, respectively. Then, the results of the short video recommendation algorithm were elaborated based on time weighting. Finally, the intelligent initial question bank of English intelligent education based on a short video recommendation algorithm was elaborated, which provided a guarantee for the promotion of short videos in English education.